Data mining and medical applications, Paris 2003

Conference report, August 1st, 2003 Joannès Vermorel, École Normale Supérieure

Summary

- Supervised Learning and Optimizing the ROC Curve, Michele Sebag, Jerome Aze and Noel Lucas
- Kasimir: a system for semantic web in cancerology, Sebastien Brachais, Mathieu d'Aquin, Jean Lieber, Amedeo Napoli
- Time-series Segmentation and Symbolic Representation, Bernard Hugueney, Bernadette Bouchon-Meunier
- Decrypton: a tool for comparative proteomics, William Saurin

Supervised Learning and Optimizing the ROC Curve

Michele Sebag, Jerome Aze and Noel Lucas

- Criterion for the evaluation of supervised learning algorithm: the Area Under the ROC Curve (AUC).
- Evolutionary ROC-based Learning algorithm (EROL) illustrated on the identification factors for atherosclerosis.

Task: identification of Arthrosclerosis factors

Data: PKDD Challenge 2002, publicly available (http://ecmlpkdd.cs.helsinki.fi)

Task: Submitting a data mining report.

Difficulties:

- Hidden factors
- Detailed description → sparse matrix
- Communication with the experts

Proposed model

Metaphor: the body is a bridge

- Initial robustness: family anamnesis
- Current robustness: personal variable
- Traffic load: tobacco alcohol

Medical intensive help → reduction of the variable set by using synthesis variables.

Receiver Operating Characteristics

Evaluating a medical test: tradeoff between

True positive rate (medical: sensibility)

False positive rate (medical: 1 - specificity)

Pros from a ML viewpoint

1 - Specificity

Operational with ill-balanced data Usable with cost errors

The EROL algorithm

Description:

- Linear regression model
- Using self adapting evolutionary algorithm
- AUC as the cost function

Provides:

- Weights for every variable that could be interpreted as the "importance" of the factor.
- The ROC Curse that could be used by the human expert to adjust the selectivity/sensitivity tradeoff.

Conclusion and perspectives on the medical application

Deserve the physician's attention

- Stability of learning
- Precise and still readable results

Going further

- Explore new hypotheses: What happens if?
 If I fix the weight of alcool and family variables,
 what happens about the weight of education?
- Consider committees of experts

References

- Michele Sebag Home page: http://www.lri.fr/~sebag/
- PKDD 2002: http://ecmlpkdd.cs.helsinki.fi/
- Inference and Learning Group at LRI: http://www.lri.fr/ia/introduction.en.html

Kasimir: a system for semantic web in cancerology

Sebastien Brachais, Mathieu d'Aquin, Jean Lieber, Amedeo Napoli

- Background: the Kasimir project
- Knowledge based system for aided diagnosis in cancerology (breast cancer treatment).
- Goals: Knowledge management in cancerology
- Acquisition, representation, diffusion and evolution of medical knowledge
- Solution: a semantic web architecture
- The benefits of the semantic web technologies to achieve the Kasimir objectives.

Lets see the big picture of Kasimir ...

Architecture

Extracted from d'Aquin, Brachais, Lieber and Napoli works -

Building, editing and maintaining knowledge

rangeducted with narmiccion

Diffusion and aided decision access

Protégé: knowledge editor

Extracted from d'Aquin, Brachais, Lieber and Napoli works -

Protégé: Communication with the knowledge representation engine

Extracted from d'Aquin, Brachais, Lieber and Napoli works -

Benefits of the Kasimir architecture

- Enable a distributed and cooperative creation of the knowledge base
- Open and extensible architecture relying on web standards (RDF, OWL)
- Interoperability with other semantic web system
- → Kasimir as a resource for the semantic web

Open questions

- Integration of Kasimir in other systems: existing ontologies, services, databases.
- Security issue: confidentiality and integrity.
- Knowledge evolution: enabling a "knowledge versioning system".
- Improving the reasoning capabilities of Kasimir: case based reasoning, fuzzy logic...

References

- Amedeo Napoli Home page: <u>http://www.loria.fr/~napoli/</u>
- Orpailleur Group at LORIA:
 http://www.loria.fr/equipes/orpailleur/index.
 Anglais.html

Time-series Segmentation and symbolic Representation

Bernard Hugueney, Bernadette Bouchon-Meunier

Background: Data streams

The data volumes are too large to be stored in a fast access memory of a typical computer.

Objective: symbolic pre-processing

Converting the raw stream into a high level representation: a symbol stream with much fewer elements.

Times series segmentation

Segmenting task:

Deciding where to place the boundaries in order to split the stream into buckets.

Criterion for choosing the boundaries:

Maximum likelihood estimation

Accuracy vs. Parsimony tradeoff:

More buckets \rightarrow

more accurate model + less data reduction

Symbolic representation

Problem:

Handling segments as set of real values is not convenient, a more abstract representation should be used.

Idea:

Each segment will be represented by a symbol issued from a limited alphabet.

Method:

Defining the similarity of two segments and then performing a clustering on the time series.

Visual example

Conclusion and Future works

- Symbolic representation help to handle and to visualize long times series.
- Improving the algorithms: online extraction of the symbolic representation.
- Finding interesting ways of mining such symbolic representation.

References

- LIP6 (Laboratoire d'informatique de Paris)
 http://www.lip6.fr/index-eng.html
- DBLP Bernard Hugueney
 http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hugueney:Bernard.html

Decrypthon: a tool for comparative proteomics

William Saurin, www.genomining.com

Goals

- A database of all pairwise similarities between proteins.
- An annotation resource

Applications

- Identification of conserved functional domains
- Reconstruction of families of homologous proteins
- Metabolic pathways reconstruction

The Decrypthon task

Data:

560000 proteins extracted from various well known public databases.

Protein comparison algorithm:

Optimal local sequence alignment (Smith and Waterman, 1981).

The computation process

560,000 sequences

The computation process

2,092 chunks

2,092 chunks

Distributed computation

GRID

Computing or supercomputing centers

100..1000
Stable
Trust
Identification of nodes

Large scale distributed system « global computation »

« desktop grid »

PCs Windows or Linux

~100,000 Unstable No trust No identification

Decrypthon figures

- •560 000 sequences -> 150 109 pairs of sequences
- •3.3 10¹² pairwise comparisons
- •4.6 10¹⁷ matrix cells
- •2.2 10⁶ jobs
- •15 10⁶ CPU hours
- •75 000 nodes
- •2 months
- •30 GB of raw results
- •150 $10^6 Z > 8$; 121 $10^6 Z > 15$
- •~88 109 matrix cell /s project
- •~532 109 matrix cell / s Decrypthon machine

The results have been released

- 295,000,000 reported results
- Repository:
 http://infobiogen.fr/services/decrypthon/
 - $-(17,000 \text{ files} \sim 30 \text{ Go})$
- The Decrypthon Search Engine

What's next?

- Conserved domain recognition
- Conserved residue identification
- Cluster of homologous proteins
- Prediction of protein-protein interactions
- Metabolic Reconstruction
- •

Reference

http://www.genoming.com/

Other references...

Webpage of the conference [French]:

http://www.data-mining.net/jfd2003

Joannes Vermorel Home Page:

http://www.vermorel.com